1 : /* $Id: tif_pixarlog.c,v 1.39 2012-12-10 17:27:13 tgl Exp $ */
2 :
3 : /*
4 : * Copyright (c) 1996-1997 Sam Leffler
5 : * Copyright (c) 1996 Pixar
6 : *
7 : * Permission to use, copy, modify, distribute, and sell this software and
8 : * its documentation for any purpose is hereby granted without fee, provided
9 : * that (i) the above copyright notices and this permission notice appear in
10 : * all copies of the software and related documentation, and (ii) the names of
11 : * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
12 : * publicity relating to the software without the specific, prior written
13 : * permission of Pixar, Sam Leffler and Silicon Graphics.
14 : *
15 : * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 : * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 : * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18 : *
19 : * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20 : * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 : * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 : * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 : * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 : * OF THIS SOFTWARE.
25 : */
26 :
27 : #include "tiffiop.h"
28 : #ifdef PIXARLOG_SUPPORT
29 :
30 : /*
31 : * TIFF Library.
32 : * PixarLog Compression Support
33 : *
34 : * Contributed by Dan McCoy.
35 : *
36 : * PixarLog film support uses the TIFF library to store companded
37 : * 11 bit values into a tiff file, which are compressed using the
38 : * zip compressor.
39 : *
40 : * The codec can take as input and produce as output 32-bit IEEE float values
41 : * as well as 16-bit or 8-bit unsigned integer values.
42 : *
43 : * On writing any of the above are converted into the internal
44 : * 11-bit log format. In the case of 8 and 16 bit values, the
45 : * input is assumed to be unsigned linear color values that represent
46 : * the range 0-1. In the case of IEEE values, the 0-1 range is assumed to
47 : * be the normal linear color range, in addition over 1 values are
48 : * accepted up to a value of about 25.0 to encode "hot" hightlights and such.
49 : * The encoding is lossless for 8-bit values, slightly lossy for the
50 : * other bit depths. The actual color precision should be better
51 : * than the human eye can perceive with extra room to allow for
52 : * error introduced by further image computation. As with any quantized
53 : * color format, it is possible to perform image calculations which
54 : * expose the quantization error. This format should certainly be less
55 : * susceptable to such errors than standard 8-bit encodings, but more
56 : * susceptable than straight 16-bit or 32-bit encodings.
57 : *
58 : * On reading the internal format is converted to the desired output format.
59 : * The program can request which format it desires by setting the internal
60 : * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
61 : * PIXARLOGDATAFMT_FLOAT = provide IEEE float values.
62 : * PIXARLOGDATAFMT_16BIT = provide unsigned 16-bit integer values
63 : * PIXARLOGDATAFMT_8BIT = provide unsigned 8-bit integer values
64 : *
65 : * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
66 : * values with the difference that if there are exactly three or four channels
67 : * (rgb or rgba) it swaps the channel order (bgr or abgr).
68 : *
69 : * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
70 : * packed in 16-bit values. However no tools are supplied for interpreting
71 : * these values.
72 : *
73 : * "hot" (over 1.0) areas written in floating point get clamped to
74 : * 1.0 in the integer data types.
75 : *
76 : * When the file is closed after writing, the bit depth and sample format
77 : * are set always to appear as if 8-bit data has been written into it.
78 : * That way a naive program unaware of the particulars of the encoding
79 : * gets the format it is most likely able to handle.
80 : *
81 : * The codec does it's own horizontal differencing step on the coded
82 : * values so the libraries predictor stuff should be turned off.
83 : * The codec also handle byte swapping the encoded values as necessary
84 : * since the library does not have the information necessary
85 : * to know the bit depth of the raw unencoded buffer.
86 : *
87 : * NOTE: This decoder does not appear to update tif_rawcp, and tif_rawcc.
88 : * This can cause problems with the implementation of CHUNKY_STRIP_READ_SUPPORT
89 : * as noted in http://trac.osgeo.org/gdal/ticket/3894. FrankW - Jan'11
90 : */
91 :
92 : #include "tif_predict.h"
93 : #include "zlib.h"
94 :
95 : #include <stdio.h>
96 : #include <stdlib.h>
97 : #include <math.h>
98 :
99 : /* Tables for converting to/from 11 bit coded values */
100 :
101 : #define TSIZE 2048 /* decode table size (11-bit tokens) */
102 : #define TSIZEP1 2049 /* Plus one for slop */
103 : #define ONE 1250 /* token value of 1.0 exactly */
104 : #define RATIO 1.004 /* nominal ratio for log part */
105 :
106 : #define CODE_MASK 0x7ff /* 11 bits. */
107 :
108 : static float Fltsize;
109 : static float LogK1, LogK2;
110 :
111 : #define REPEAT(n, op) { int i; i=n; do { i--; op; } while (i>0); }
112 :
113 : static void
114 0 : horizontalAccumulateF(uint16 *wp, int n, int stride, float *op,
115 : float *ToLinearF)
116 : {
117 : register unsigned int cr, cg, cb, ca, mask;
118 : register float t0, t1, t2, t3;
119 :
120 0 : if (n >= stride) {
121 0 : mask = CODE_MASK;
122 0 : if (stride == 3) {
123 0 : t0 = ToLinearF[cr = (wp[0] & mask)];
124 0 : t1 = ToLinearF[cg = (wp[1] & mask)];
125 0 : t2 = ToLinearF[cb = (wp[2] & mask)];
126 0 : op[0] = t0;
127 0 : op[1] = t1;
128 0 : op[2] = t2;
129 0 : n -= 3;
130 0 : while (n > 0) {
131 0 : wp += 3;
132 0 : op += 3;
133 0 : n -= 3;
134 0 : t0 = ToLinearF[(cr += wp[0]) & mask];
135 0 : t1 = ToLinearF[(cg += wp[1]) & mask];
136 0 : t2 = ToLinearF[(cb += wp[2]) & mask];
137 0 : op[0] = t0;
138 0 : op[1] = t1;
139 0 : op[2] = t2;
140 : }
141 0 : } else if (stride == 4) {
142 0 : t0 = ToLinearF[cr = (wp[0] & mask)];
143 0 : t1 = ToLinearF[cg = (wp[1] & mask)];
144 0 : t2 = ToLinearF[cb = (wp[2] & mask)];
145 0 : t3 = ToLinearF[ca = (wp[3] & mask)];
146 0 : op[0] = t0;
147 0 : op[1] = t1;
148 0 : op[2] = t2;
149 0 : op[3] = t3;
150 0 : n -= 4;
151 0 : while (n > 0) {
152 0 : wp += 4;
153 0 : op += 4;
154 0 : n -= 4;
155 0 : t0 = ToLinearF[(cr += wp[0]) & mask];
156 0 : t1 = ToLinearF[(cg += wp[1]) & mask];
157 0 : t2 = ToLinearF[(cb += wp[2]) & mask];
158 0 : t3 = ToLinearF[(ca += wp[3]) & mask];
159 0 : op[0] = t0;
160 0 : op[1] = t1;
161 0 : op[2] = t2;
162 0 : op[3] = t3;
163 : }
164 : } else {
165 0 : REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++)
166 0 : n -= stride;
167 0 : while (n > 0) {
168 0 : REPEAT(stride,
169 : wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++)
170 0 : n -= stride;
171 : }
172 : }
173 : }
174 0 : }
175 :
176 : static void
177 0 : horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op,
178 : float *ToLinearF)
179 : {
180 : register unsigned int cr, cg, cb, ca, mask;
181 : register float t0, t1, t2, t3;
182 :
183 : #define SCALE12 2048.0F
184 : #define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071)
185 :
186 0 : if (n >= stride) {
187 0 : mask = CODE_MASK;
188 0 : if (stride == 3) {
189 0 : t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
190 0 : t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
191 0 : t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
192 0 : op[0] = CLAMP12(t0);
193 0 : op[1] = CLAMP12(t1);
194 0 : op[2] = CLAMP12(t2);
195 0 : n -= 3;
196 0 : while (n > 0) {
197 0 : wp += 3;
198 0 : op += 3;
199 0 : n -= 3;
200 0 : t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
201 0 : t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
202 0 : t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
203 0 : op[0] = CLAMP12(t0);
204 0 : op[1] = CLAMP12(t1);
205 0 : op[2] = CLAMP12(t2);
206 : }
207 0 : } else if (stride == 4) {
208 0 : t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
209 0 : t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
210 0 : t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
211 0 : t3 = ToLinearF[ca = (wp[3] & mask)] * SCALE12;
212 0 : op[0] = CLAMP12(t0);
213 0 : op[1] = CLAMP12(t1);
214 0 : op[2] = CLAMP12(t2);
215 0 : op[3] = CLAMP12(t3);
216 0 : n -= 4;
217 0 : while (n > 0) {
218 0 : wp += 4;
219 0 : op += 4;
220 0 : n -= 4;
221 0 : t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
222 0 : t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
223 0 : t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
224 0 : t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
225 0 : op[0] = CLAMP12(t0);
226 0 : op[1] = CLAMP12(t1);
227 0 : op[2] = CLAMP12(t2);
228 0 : op[3] = CLAMP12(t3);
229 : }
230 : } else {
231 0 : REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12;
232 : *op = CLAMP12(t0); wp++; op++)
233 0 : n -= stride;
234 0 : while (n > 0) {
235 0 : REPEAT(stride,
236 : wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12;
237 : *op = CLAMP12(t0); wp++; op++)
238 0 : n -= stride;
239 : }
240 : }
241 : }
242 0 : }
243 :
244 : static void
245 0 : horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op,
246 : uint16 *ToLinear16)
247 : {
248 : register unsigned int cr, cg, cb, ca, mask;
249 :
250 0 : if (n >= stride) {
251 0 : mask = CODE_MASK;
252 0 : if (stride == 3) {
253 0 : op[0] = ToLinear16[cr = (wp[0] & mask)];
254 0 : op[1] = ToLinear16[cg = (wp[1] & mask)];
255 0 : op[2] = ToLinear16[cb = (wp[2] & mask)];
256 0 : n -= 3;
257 0 : while (n > 0) {
258 0 : wp += 3;
259 0 : op += 3;
260 0 : n -= 3;
261 0 : op[0] = ToLinear16[(cr += wp[0]) & mask];
262 0 : op[1] = ToLinear16[(cg += wp[1]) & mask];
263 0 : op[2] = ToLinear16[(cb += wp[2]) & mask];
264 : }
265 0 : } else if (stride == 4) {
266 0 : op[0] = ToLinear16[cr = (wp[0] & mask)];
267 0 : op[1] = ToLinear16[cg = (wp[1] & mask)];
268 0 : op[2] = ToLinear16[cb = (wp[2] & mask)];
269 0 : op[3] = ToLinear16[ca = (wp[3] & mask)];
270 0 : n -= 4;
271 0 : while (n > 0) {
272 0 : wp += 4;
273 0 : op += 4;
274 0 : n -= 4;
275 0 : op[0] = ToLinear16[(cr += wp[0]) & mask];
276 0 : op[1] = ToLinear16[(cg += wp[1]) & mask];
277 0 : op[2] = ToLinear16[(cb += wp[2]) & mask];
278 0 : op[3] = ToLinear16[(ca += wp[3]) & mask];
279 : }
280 : } else {
281 0 : REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++)
282 0 : n -= stride;
283 0 : while (n > 0) {
284 0 : REPEAT(stride,
285 : wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++)
286 0 : n -= stride;
287 : }
288 : }
289 : }
290 0 : }
291 :
292 : /*
293 : * Returns the log encoded 11-bit values with the horizontal
294 : * differencing undone.
295 : */
296 : static void
297 0 : horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op)
298 : {
299 : register unsigned int cr, cg, cb, ca, mask;
300 :
301 0 : if (n >= stride) {
302 0 : mask = CODE_MASK;
303 0 : if (stride == 3) {
304 0 : op[0] = cr = wp[0]; op[1] = cg = wp[1]; op[2] = cb = wp[2];
305 0 : n -= 3;
306 0 : while (n > 0) {
307 0 : wp += 3;
308 0 : op += 3;
309 0 : n -= 3;
310 0 : op[0] = (cr += wp[0]) & mask;
311 0 : op[1] = (cg += wp[1]) & mask;
312 0 : op[2] = (cb += wp[2]) & mask;
313 : }
314 0 : } else if (stride == 4) {
315 0 : op[0] = cr = wp[0]; op[1] = cg = wp[1];
316 0 : op[2] = cb = wp[2]; op[3] = ca = wp[3];
317 0 : n -= 4;
318 0 : while (n > 0) {
319 0 : wp += 4;
320 0 : op += 4;
321 0 : n -= 4;
322 0 : op[0] = (cr += wp[0]) & mask;
323 0 : op[1] = (cg += wp[1]) & mask;
324 0 : op[2] = (cb += wp[2]) & mask;
325 0 : op[3] = (ca += wp[3]) & mask;
326 : }
327 : } else {
328 0 : REPEAT(stride, *op = *wp&mask; wp++; op++)
329 0 : n -= stride;
330 0 : while (n > 0) {
331 0 : REPEAT(stride,
332 : wp[stride] += *wp; *op = *wp&mask; wp++; op++)
333 0 : n -= stride;
334 : }
335 : }
336 : }
337 0 : }
338 :
339 : static void
340 0 : horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op,
341 : unsigned char *ToLinear8)
342 : {
343 : register unsigned int cr, cg, cb, ca, mask;
344 :
345 0 : if (n >= stride) {
346 0 : mask = CODE_MASK;
347 0 : if (stride == 3) {
348 0 : op[0] = ToLinear8[cr = (wp[0] & mask)];
349 0 : op[1] = ToLinear8[cg = (wp[1] & mask)];
350 0 : op[2] = ToLinear8[cb = (wp[2] & mask)];
351 0 : n -= 3;
352 0 : while (n > 0) {
353 0 : n -= 3;
354 0 : wp += 3;
355 0 : op += 3;
356 0 : op[0] = ToLinear8[(cr += wp[0]) & mask];
357 0 : op[1] = ToLinear8[(cg += wp[1]) & mask];
358 0 : op[2] = ToLinear8[(cb += wp[2]) & mask];
359 : }
360 0 : } else if (stride == 4) {
361 0 : op[0] = ToLinear8[cr = (wp[0] & mask)];
362 0 : op[1] = ToLinear8[cg = (wp[1] & mask)];
363 0 : op[2] = ToLinear8[cb = (wp[2] & mask)];
364 0 : op[3] = ToLinear8[ca = (wp[3] & mask)];
365 0 : n -= 4;
366 0 : while (n > 0) {
367 0 : n -= 4;
368 0 : wp += 4;
369 0 : op += 4;
370 0 : op[0] = ToLinear8[(cr += wp[0]) & mask];
371 0 : op[1] = ToLinear8[(cg += wp[1]) & mask];
372 0 : op[2] = ToLinear8[(cb += wp[2]) & mask];
373 0 : op[3] = ToLinear8[(ca += wp[3]) & mask];
374 : }
375 : } else {
376 0 : REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
377 0 : n -= stride;
378 0 : while (n > 0) {
379 0 : REPEAT(stride,
380 : wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
381 0 : n -= stride;
382 : }
383 : }
384 : }
385 0 : }
386 :
387 :
388 : static void
389 0 : horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op,
390 : unsigned char *ToLinear8)
391 : {
392 : register unsigned int cr, cg, cb, ca, mask;
393 : register unsigned char t0, t1, t2, t3;
394 :
395 0 : if (n >= stride) {
396 0 : mask = CODE_MASK;
397 0 : if (stride == 3) {
398 0 : op[0] = 0;
399 0 : t1 = ToLinear8[cb = (wp[2] & mask)];
400 0 : t2 = ToLinear8[cg = (wp[1] & mask)];
401 0 : t3 = ToLinear8[cr = (wp[0] & mask)];
402 0 : op[1] = t1;
403 0 : op[2] = t2;
404 0 : op[3] = t3;
405 0 : n -= 3;
406 0 : while (n > 0) {
407 0 : n -= 3;
408 0 : wp += 3;
409 0 : op += 4;
410 0 : op[0] = 0;
411 0 : t1 = ToLinear8[(cb += wp[2]) & mask];
412 0 : t2 = ToLinear8[(cg += wp[1]) & mask];
413 0 : t3 = ToLinear8[(cr += wp[0]) & mask];
414 0 : op[1] = t1;
415 0 : op[2] = t2;
416 0 : op[3] = t3;
417 : }
418 0 : } else if (stride == 4) {
419 0 : t0 = ToLinear8[ca = (wp[3] & mask)];
420 0 : t1 = ToLinear8[cb = (wp[2] & mask)];
421 0 : t2 = ToLinear8[cg = (wp[1] & mask)];
422 0 : t3 = ToLinear8[cr = (wp[0] & mask)];
423 0 : op[0] = t0;
424 0 : op[1] = t1;
425 0 : op[2] = t2;
426 0 : op[3] = t3;
427 0 : n -= 4;
428 0 : while (n > 0) {
429 0 : n -= 4;
430 0 : wp += 4;
431 0 : op += 4;
432 0 : t0 = ToLinear8[(ca += wp[3]) & mask];
433 0 : t1 = ToLinear8[(cb += wp[2]) & mask];
434 0 : t2 = ToLinear8[(cg += wp[1]) & mask];
435 0 : t3 = ToLinear8[(cr += wp[0]) & mask];
436 0 : op[0] = t0;
437 0 : op[1] = t1;
438 0 : op[2] = t2;
439 0 : op[3] = t3;
440 : }
441 : } else {
442 0 : REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
443 0 : n -= stride;
444 0 : while (n > 0) {
445 0 : REPEAT(stride,
446 : wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
447 0 : n -= stride;
448 : }
449 : }
450 : }
451 0 : }
452 :
453 : /*
454 : * State block for each open TIFF
455 : * file using PixarLog compression/decompression.
456 : */
457 : typedef struct {
458 : TIFFPredictorState predict;
459 : z_stream stream;
460 : uint16 *tbuf;
461 : uint16 stride;
462 : int state;
463 : int user_datafmt;
464 : int quality;
465 : #define PLSTATE_INIT 1
466 :
467 : TIFFVSetMethod vgetparent; /* super-class method */
468 : TIFFVSetMethod vsetparent; /* super-class method */
469 :
470 : float *ToLinearF;
471 : uint16 *ToLinear16;
472 : unsigned char *ToLinear8;
473 : uint16 *FromLT2;
474 : uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
475 : uint16 *From8;
476 :
477 : } PixarLogState;
478 :
479 : static int
480 0 : PixarLogMakeTables(PixarLogState *sp)
481 : {
482 :
483 : /*
484 : * We make several tables here to convert between various external
485 : * representations (float, 16-bit, and 8-bit) and the internal
486 : * 11-bit companded representation. The 11-bit representation has two
487 : * distinct regions. A linear bottom end up through .018316 in steps
488 : * of about .000073, and a region of constant ratio up to about 25.
489 : * These floating point numbers are stored in the main table ToLinearF.
490 : * All other tables are derived from this one. The tables (and the
491 : * ratios) are continuous at the internal seam.
492 : */
493 :
494 : int nlin, lt2size;
495 : int i, j;
496 : double b, c, linstep, v;
497 : float *ToLinearF;
498 : uint16 *ToLinear16;
499 : unsigned char *ToLinear8;
500 : uint16 *FromLT2;
501 : uint16 *From14; /* Really for 16-bit data, but we shift down 2 */
502 : uint16 *From8;
503 :
504 0 : c = log(RATIO);
505 0 : nlin = (int)(1./c); /* nlin must be an integer */
506 0 : c = 1./nlin;
507 0 : b = exp(-c*ONE); /* multiplicative scale factor [b*exp(c*ONE) = 1] */
508 0 : linstep = b*c*exp(1.);
509 :
510 0 : LogK1 = (float)(1./c); /* if (v >= 2) token = k1*log(v*k2) */
511 0 : LogK2 = (float)(1./b);
512 0 : lt2size = (int)(2./linstep) + 1;
513 0 : FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16));
514 0 : From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16));
515 0 : From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16));
516 0 : ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float));
517 0 : ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16));
518 0 : ToLinear8 = (unsigned char *)_TIFFmalloc(TSIZEP1 * sizeof(unsigned char));
519 0 : if (FromLT2 == NULL || From14 == NULL || From8 == NULL ||
520 : ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) {
521 0 : if (FromLT2) _TIFFfree(FromLT2);
522 0 : if (From14) _TIFFfree(From14);
523 0 : if (From8) _TIFFfree(From8);
524 0 : if (ToLinearF) _TIFFfree(ToLinearF);
525 0 : if (ToLinear16) _TIFFfree(ToLinear16);
526 0 : if (ToLinear8) _TIFFfree(ToLinear8);
527 0 : sp->FromLT2 = NULL;
528 0 : sp->From14 = NULL;
529 0 : sp->From8 = NULL;
530 0 : sp->ToLinearF = NULL;
531 0 : sp->ToLinear16 = NULL;
532 0 : sp->ToLinear8 = NULL;
533 0 : return 0;
534 : }
535 :
536 0 : j = 0;
537 :
538 0 : for (i = 0; i < nlin; i++) {
539 0 : v = i * linstep;
540 0 : ToLinearF[j++] = (float)v;
541 : }
542 :
543 0 : for (i = nlin; i < TSIZE; i++)
544 0 : ToLinearF[j++] = (float)(b*exp(c*i));
545 :
546 0 : ToLinearF[2048] = ToLinearF[2047];
547 :
548 0 : for (i = 0; i < TSIZEP1; i++) {
549 0 : v = ToLinearF[i]*65535.0 + 0.5;
550 0 : ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v;
551 0 : v = ToLinearF[i]*255.0 + 0.5;
552 0 : ToLinear8[i] = (v > 255.0) ? 255 : (unsigned char)v;
553 : }
554 :
555 0 : j = 0;
556 0 : for (i = 0; i < lt2size; i++) {
557 0 : if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1])
558 0 : j++;
559 0 : FromLT2[i] = j;
560 : }
561 :
562 : /*
563 : * Since we lose info anyway on 16-bit data, we set up a 14-bit
564 : * table and shift 16-bit values down two bits on input.
565 : * saves a little table space.
566 : */
567 0 : j = 0;
568 0 : for (i = 0; i < 16384; i++) {
569 0 : while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1])
570 0 : j++;
571 0 : From14[i] = j;
572 : }
573 :
574 0 : j = 0;
575 0 : for (i = 0; i < 256; i++) {
576 0 : while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1])
577 0 : j++;
578 0 : From8[i] = j;
579 : }
580 :
581 0 : Fltsize = (float)(lt2size/2);
582 :
583 0 : sp->ToLinearF = ToLinearF;
584 0 : sp->ToLinear16 = ToLinear16;
585 0 : sp->ToLinear8 = ToLinear8;
586 0 : sp->FromLT2 = FromLT2;
587 0 : sp->From14 = From14;
588 0 : sp->From8 = From8;
589 :
590 0 : return 1;
591 : }
592 :
593 : #define DecoderState(tif) ((PixarLogState*) (tif)->tif_data)
594 : #define EncoderState(tif) ((PixarLogState*) (tif)->tif_data)
595 :
596 : static int PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s);
597 : static int PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s);
598 :
599 : #define PIXARLOGDATAFMT_UNKNOWN -1
600 :
601 : static int
602 0 : PixarLogGuessDataFmt(TIFFDirectory *td)
603 : {
604 0 : int guess = PIXARLOGDATAFMT_UNKNOWN;
605 0 : int format = td->td_sampleformat;
606 :
607 : /* If the user didn't tell us his datafmt,
608 : * take our best guess from the bitspersample.
609 : */
610 0 : switch (td->td_bitspersample) {
611 : case 32:
612 0 : if (format == SAMPLEFORMAT_IEEEFP)
613 0 : guess = PIXARLOGDATAFMT_FLOAT;
614 0 : break;
615 : case 16:
616 0 : if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
617 0 : guess = PIXARLOGDATAFMT_16BIT;
618 0 : break;
619 : case 12:
620 0 : if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
621 0 : guess = PIXARLOGDATAFMT_12BITPICIO;
622 0 : break;
623 : case 11:
624 0 : if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
625 0 : guess = PIXARLOGDATAFMT_11BITLOG;
626 0 : break;
627 : case 8:
628 0 : if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
629 0 : guess = PIXARLOGDATAFMT_8BIT;
630 : break;
631 : }
632 :
633 0 : return guess;
634 : }
635 :
636 : static tmsize_t
637 0 : multiply_ms(tmsize_t m1, tmsize_t m2)
638 : {
639 0 : tmsize_t bytes = m1 * m2;
640 :
641 0 : if (m1 && bytes / m1 != m2)
642 0 : bytes = 0;
643 :
644 0 : return bytes;
645 : }
646 :
647 : static tmsize_t
648 0 : add_ms(tmsize_t m1, tmsize_t m2)
649 : {
650 0 : tmsize_t bytes = m1 + m2;
651 :
652 : /* if either input is zero, assume overflow already occurred */
653 0 : if (m1 == 0 || m2 == 0)
654 0 : bytes = 0;
655 0 : else if (bytes <= m1 || bytes <= m2)
656 0 : bytes = 0;
657 :
658 0 : return bytes;
659 : }
660 :
661 : static int
662 0 : PixarLogFixupTags(TIFF* tif)
663 : {
664 : (void) tif;
665 0 : return (1);
666 : }
667 :
668 : static int
669 0 : PixarLogSetupDecode(TIFF* tif)
670 : {
671 : static const char module[] = "PixarLogSetupDecode";
672 0 : TIFFDirectory *td = &tif->tif_dir;
673 0 : PixarLogState* sp = DecoderState(tif);
674 : tmsize_t tbuf_size;
675 :
676 0 : assert(sp != NULL);
677 :
678 : /* Make sure no byte swapping happens on the data
679 : * after decompression. */
680 0 : tif->tif_postdecode = _TIFFNoPostDecode;
681 :
682 : /* for some reason, we can't do this in TIFFInitPixarLog */
683 :
684 0 : sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
685 : td->td_samplesperpixel : 1);
686 0 : tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
687 0 : td->td_rowsperstrip), sizeof(uint16));
688 : /* add one more stride in case input ends mid-stride */
689 0 : tbuf_size = add_ms(tbuf_size, sizeof(uint16) * sp->stride);
690 0 : if (tbuf_size == 0)
691 0 : return (0); /* TODO: this is an error return without error report through TIFFErrorExt */
692 0 : sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
693 0 : if (sp->tbuf == NULL)
694 0 : return (0);
695 0 : if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
696 0 : sp->user_datafmt = PixarLogGuessDataFmt(td);
697 0 : if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
698 0 : TIFFErrorExt(tif->tif_clientdata, module,
699 : "PixarLog compression can't handle bits depth/data format combination (depth: %d)",
700 0 : td->td_bitspersample);
701 0 : return (0);
702 : }
703 :
704 0 : if (inflateInit(&sp->stream) != Z_OK) {
705 0 : TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg);
706 0 : return (0);
707 : } else {
708 0 : sp->state |= PLSTATE_INIT;
709 0 : return (1);
710 : }
711 : }
712 :
713 : /*
714 : * Setup state for decoding a strip.
715 : */
716 : static int
717 0 : PixarLogPreDecode(TIFF* tif, uint16 s)
718 : {
719 : static const char module[] = "PixarLogPreDecode";
720 0 : PixarLogState* sp = DecoderState(tif);
721 :
722 : (void) s;
723 0 : assert(sp != NULL);
724 0 : sp->stream.next_in = tif->tif_rawdata;
725 : assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised,
726 : we need to simplify this code to reflect a ZLib that is likely updated
727 : to deal with 8byte memory sizes, though this code will respond
728 : apropriately even before we simplify it */
729 0 : sp->stream.avail_in = (uInt) tif->tif_rawcc;
730 0 : if ((tmsize_t)sp->stream.avail_in != tif->tif_rawcc)
731 : {
732 0 : TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
733 0 : return (0);
734 : }
735 0 : return (inflateReset(&sp->stream) == Z_OK);
736 : }
737 :
738 : static int
739 0 : PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
740 : {
741 : static const char module[] = "PixarLogDecode";
742 0 : TIFFDirectory *td = &tif->tif_dir;
743 0 : PixarLogState* sp = DecoderState(tif);
744 : tmsize_t i;
745 : tmsize_t nsamples;
746 : int llen;
747 : uint16 *up;
748 :
749 0 : switch (sp->user_datafmt) {
750 : case PIXARLOGDATAFMT_FLOAT:
751 0 : nsamples = occ / sizeof(float); /* XXX float == 32 bits */
752 0 : break;
753 : case PIXARLOGDATAFMT_16BIT:
754 : case PIXARLOGDATAFMT_12BITPICIO:
755 : case PIXARLOGDATAFMT_11BITLOG:
756 0 : nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */
757 0 : break;
758 : case PIXARLOGDATAFMT_8BIT:
759 : case PIXARLOGDATAFMT_8BITABGR:
760 0 : nsamples = occ;
761 0 : break;
762 : default:
763 0 : TIFFErrorExt(tif->tif_clientdata, module,
764 : "%d bit input not supported in PixarLog",
765 0 : td->td_bitspersample);
766 0 : return 0;
767 : }
768 :
769 0 : llen = sp->stride * td->td_imagewidth;
770 :
771 : (void) s;
772 0 : assert(sp != NULL);
773 0 : sp->stream.next_out = (unsigned char *) sp->tbuf;
774 : assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised,
775 : we need to simplify this code to reflect a ZLib that is likely updated
776 : to deal with 8byte memory sizes, though this code will respond
777 : apropriately even before we simplify it */
778 0 : sp->stream.avail_out = (uInt) (nsamples * sizeof(uint16));
779 0 : if (sp->stream.avail_out != nsamples * sizeof(uint16))
780 : {
781 0 : TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
782 0 : return (0);
783 : }
784 : do {
785 0 : int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
786 0 : if (state == Z_STREAM_END) {
787 0 : break; /* XXX */
788 : }
789 0 : if (state == Z_DATA_ERROR) {
790 0 : TIFFErrorExt(tif->tif_clientdata, module,
791 : "Decoding error at scanline %lu, %s",
792 : (unsigned long) tif->tif_row, sp->stream.msg);
793 0 : if (inflateSync(&sp->stream) != Z_OK)
794 0 : return (0);
795 0 : continue;
796 : }
797 0 : if (state != Z_OK) {
798 0 : TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
799 : sp->stream.msg);
800 0 : return (0);
801 : }
802 0 : } while (sp->stream.avail_out > 0);
803 :
804 : /* hopefully, we got all the bytes we needed */
805 0 : if (sp->stream.avail_out != 0) {
806 0 : TIFFErrorExt(tif->tif_clientdata, module,
807 : "Not enough data at scanline %lu (short " TIFF_UINT64_FORMAT " bytes)",
808 : (unsigned long) tif->tif_row, (TIFF_UINT64_T) sp->stream.avail_out);
809 0 : return (0);
810 : }
811 :
812 0 : up = sp->tbuf;
813 : /* Swap bytes in the data if from a different endian machine. */
814 0 : if (tif->tif_flags & TIFF_SWAB)
815 0 : TIFFSwabArrayOfShort(up, nsamples);
816 :
817 : /*
818 : * if llen is not an exact multiple of nsamples, the decode operation
819 : * may overflow the output buffer, so truncate it enough to prevent
820 : * that but still salvage as much data as possible.
821 : */
822 0 : if (nsamples % llen) {
823 0 : TIFFWarningExt(tif->tif_clientdata, module,
824 : "stride %lu is not a multiple of sample count, "
825 : "%lu, data truncated.", (unsigned long) llen, (unsigned long) nsamples);
826 0 : nsamples -= nsamples % llen;
827 : }
828 :
829 0 : for (i = 0; i < nsamples; i += llen, up += llen) {
830 0 : switch (sp->user_datafmt) {
831 : case PIXARLOGDATAFMT_FLOAT:
832 0 : horizontalAccumulateF(up, llen, sp->stride,
833 : (float *)op, sp->ToLinearF);
834 0 : op += llen * sizeof(float);
835 0 : break;
836 : case PIXARLOGDATAFMT_16BIT:
837 0 : horizontalAccumulate16(up, llen, sp->stride,
838 : (uint16 *)op, sp->ToLinear16);
839 0 : op += llen * sizeof(uint16);
840 0 : break;
841 : case PIXARLOGDATAFMT_12BITPICIO:
842 0 : horizontalAccumulate12(up, llen, sp->stride,
843 : (int16 *)op, sp->ToLinearF);
844 0 : op += llen * sizeof(int16);
845 0 : break;
846 : case PIXARLOGDATAFMT_11BITLOG:
847 0 : horizontalAccumulate11(up, llen, sp->stride,
848 : (uint16 *)op);
849 0 : op += llen * sizeof(uint16);
850 0 : break;
851 : case PIXARLOGDATAFMT_8BIT:
852 0 : horizontalAccumulate8(up, llen, sp->stride,
853 : (unsigned char *)op, sp->ToLinear8);
854 0 : op += llen * sizeof(unsigned char);
855 0 : break;
856 : case PIXARLOGDATAFMT_8BITABGR:
857 0 : horizontalAccumulate8abgr(up, llen, sp->stride,
858 : (unsigned char *)op, sp->ToLinear8);
859 0 : op += llen * sizeof(unsigned char);
860 0 : break;
861 : default:
862 0 : TIFFErrorExt(tif->tif_clientdata, module,
863 : "Unsupported bits/sample: %d",
864 0 : td->td_bitspersample);
865 0 : return (0);
866 : }
867 : }
868 :
869 0 : return (1);
870 : }
871 :
872 : static int
873 0 : PixarLogSetupEncode(TIFF* tif)
874 : {
875 : static const char module[] = "PixarLogSetupEncode";
876 0 : TIFFDirectory *td = &tif->tif_dir;
877 0 : PixarLogState* sp = EncoderState(tif);
878 : tmsize_t tbuf_size;
879 :
880 0 : assert(sp != NULL);
881 :
882 : /* for some reason, we can't do this in TIFFInitPixarLog */
883 :
884 0 : sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
885 : td->td_samplesperpixel : 1);
886 0 : tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
887 0 : td->td_rowsperstrip), sizeof(uint16));
888 0 : if (tbuf_size == 0)
889 0 : return (0); /* TODO: this is an error return without error report through TIFFErrorExt */
890 0 : sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
891 0 : if (sp->tbuf == NULL)
892 0 : return (0);
893 0 : if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
894 0 : sp->user_datafmt = PixarLogGuessDataFmt(td);
895 0 : if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
896 0 : TIFFErrorExt(tif->tif_clientdata, module, "PixarLog compression can't handle %d bit linear encodings", td->td_bitspersample);
897 0 : return (0);
898 : }
899 :
900 0 : if (deflateInit(&sp->stream, sp->quality) != Z_OK) {
901 0 : TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg);
902 0 : return (0);
903 : } else {
904 0 : sp->state |= PLSTATE_INIT;
905 0 : return (1);
906 : }
907 : }
908 :
909 : /*
910 : * Reset encoding state at the start of a strip.
911 : */
912 : static int
913 0 : PixarLogPreEncode(TIFF* tif, uint16 s)
914 : {
915 : static const char module[] = "PixarLogPreEncode";
916 0 : PixarLogState *sp = EncoderState(tif);
917 :
918 : (void) s;
919 0 : assert(sp != NULL);
920 0 : sp->stream.next_out = tif->tif_rawdata;
921 : assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised,
922 : we need to simplify this code to reflect a ZLib that is likely updated
923 : to deal with 8byte memory sizes, though this code will respond
924 : apropriately even before we simplify it */
925 0 : sp->stream.avail_out = tif->tif_rawdatasize;
926 0 : if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize)
927 : {
928 0 : TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size");
929 0 : return (0);
930 : }
931 0 : return (deflateReset(&sp->stream) == Z_OK);
932 : }
933 :
934 : static void
935 0 : horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
936 : {
937 : int32 r1, g1, b1, a1, r2, g2, b2, a2, mask;
938 0 : float fltsize = Fltsize;
939 :
940 : #define CLAMP(v) ( (v<(float)0.) ? 0 \
941 : : (v<(float)2.) ? FromLT2[(int)(v*fltsize)] \
942 : : (v>(float)24.2) ? 2047 \
943 : : LogK1*log(v*LogK2) + 0.5 )
944 :
945 0 : mask = CODE_MASK;
946 0 : if (n >= stride) {
947 0 : if (stride == 3) {
948 0 : r2 = wp[0] = (uint16) CLAMP(ip[0]);
949 0 : g2 = wp[1] = (uint16) CLAMP(ip[1]);
950 0 : b2 = wp[2] = (uint16) CLAMP(ip[2]);
951 0 : n -= 3;
952 0 : while (n > 0) {
953 0 : n -= 3;
954 0 : wp += 3;
955 0 : ip += 3;
956 0 : r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
957 0 : g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
958 0 : b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
959 : }
960 0 : } else if (stride == 4) {
961 0 : r2 = wp[0] = (uint16) CLAMP(ip[0]);
962 0 : g2 = wp[1] = (uint16) CLAMP(ip[1]);
963 0 : b2 = wp[2] = (uint16) CLAMP(ip[2]);
964 0 : a2 = wp[3] = (uint16) CLAMP(ip[3]);
965 0 : n -= 4;
966 0 : while (n > 0) {
967 0 : n -= 4;
968 0 : wp += 4;
969 0 : ip += 4;
970 0 : r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
971 0 : g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
972 0 : b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
973 0 : a1 = (int32) CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
974 : }
975 : } else {
976 0 : ip += n - 1; /* point to last one */
977 0 : wp += n - 1; /* point to last one */
978 0 : n -= stride;
979 0 : while (n > 0) {
980 0 : REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]);
981 : wp[stride] -= wp[0];
982 : wp[stride] &= mask;
983 : wp--; ip--)
984 0 : n -= stride;
985 : }
986 0 : REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp--; ip--)
987 : }
988 : }
989 0 : }
990 :
991 : static void
992 0 : horizontalDifference16(unsigned short *ip, int n, int stride,
993 : unsigned short *wp, uint16 *From14)
994 : {
995 : register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
996 :
997 : /* assumption is unsigned pixel values */
998 : #undef CLAMP
999 : #define CLAMP(v) From14[(v) >> 2]
1000 :
1001 0 : mask = CODE_MASK;
1002 0 : if (n >= stride) {
1003 0 : if (stride == 3) {
1004 0 : r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1005 0 : b2 = wp[2] = CLAMP(ip[2]);
1006 0 : n -= 3;
1007 0 : while (n > 0) {
1008 0 : n -= 3;
1009 0 : wp += 3;
1010 0 : ip += 3;
1011 0 : r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
1012 0 : g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
1013 0 : b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
1014 : }
1015 0 : } else if (stride == 4) {
1016 0 : r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1017 0 : b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
1018 0 : n -= 4;
1019 0 : while (n > 0) {
1020 0 : n -= 4;
1021 0 : wp += 4;
1022 0 : ip += 4;
1023 0 : r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
1024 0 : g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
1025 0 : b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
1026 0 : a1 = CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
1027 : }
1028 : } else {
1029 0 : ip += n - 1; /* point to last one */
1030 0 : wp += n - 1; /* point to last one */
1031 0 : n -= stride;
1032 0 : while (n > 0) {
1033 0 : REPEAT(stride, wp[0] = CLAMP(ip[0]);
1034 : wp[stride] -= wp[0];
1035 : wp[stride] &= mask;
1036 : wp--; ip--)
1037 0 : n -= stride;
1038 : }
1039 0 : REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
1040 : }
1041 : }
1042 0 : }
1043 :
1044 :
1045 : static void
1046 0 : horizontalDifference8(unsigned char *ip, int n, int stride,
1047 : unsigned short *wp, uint16 *From8)
1048 : {
1049 : register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
1050 :
1051 : #undef CLAMP
1052 : #define CLAMP(v) (From8[(v)])
1053 :
1054 0 : mask = CODE_MASK;
1055 0 : if (n >= stride) {
1056 0 : if (stride == 3) {
1057 0 : r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1058 0 : b2 = wp[2] = CLAMP(ip[2]);
1059 0 : n -= 3;
1060 0 : while (n > 0) {
1061 0 : n -= 3;
1062 0 : r1 = CLAMP(ip[3]); wp[3] = (r1-r2) & mask; r2 = r1;
1063 0 : g1 = CLAMP(ip[4]); wp[4] = (g1-g2) & mask; g2 = g1;
1064 0 : b1 = CLAMP(ip[5]); wp[5] = (b1-b2) & mask; b2 = b1;
1065 0 : wp += 3;
1066 0 : ip += 3;
1067 : }
1068 0 : } else if (stride == 4) {
1069 0 : r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]);
1070 0 : b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]);
1071 0 : n -= 4;
1072 0 : while (n > 0) {
1073 0 : n -= 4;
1074 0 : r1 = CLAMP(ip[4]); wp[4] = (r1-r2) & mask; r2 = r1;
1075 0 : g1 = CLAMP(ip[5]); wp[5] = (g1-g2) & mask; g2 = g1;
1076 0 : b1 = CLAMP(ip[6]); wp[6] = (b1-b2) & mask; b2 = b1;
1077 0 : a1 = CLAMP(ip[7]); wp[7] = (a1-a2) & mask; a2 = a1;
1078 0 : wp += 4;
1079 0 : ip += 4;
1080 : }
1081 : } else {
1082 0 : wp += n + stride - 1; /* point to last one */
1083 0 : ip += n + stride - 1; /* point to last one */
1084 0 : n -= stride;
1085 0 : while (n > 0) {
1086 0 : REPEAT(stride, wp[0] = CLAMP(ip[0]);
1087 : wp[stride] -= wp[0];
1088 : wp[stride] &= mask;
1089 : wp--; ip--)
1090 0 : n -= stride;
1091 : }
1092 0 : REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
1093 : }
1094 : }
1095 0 : }
1096 :
1097 : /*
1098 : * Encode a chunk of pixels.
1099 : */
1100 : static int
1101 0 : PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
1102 : {
1103 : static const char module[] = "PixarLogEncode";
1104 0 : TIFFDirectory *td = &tif->tif_dir;
1105 0 : PixarLogState *sp = EncoderState(tif);
1106 : tmsize_t i;
1107 : tmsize_t n;
1108 : int llen;
1109 : unsigned short * up;
1110 :
1111 : (void) s;
1112 :
1113 0 : switch (sp->user_datafmt) {
1114 : case PIXARLOGDATAFMT_FLOAT:
1115 0 : n = cc / sizeof(float); /* XXX float == 32 bits */
1116 0 : break;
1117 : case PIXARLOGDATAFMT_16BIT:
1118 : case PIXARLOGDATAFMT_12BITPICIO:
1119 : case PIXARLOGDATAFMT_11BITLOG:
1120 0 : n = cc / sizeof(uint16); /* XXX uint16 == 16 bits */
1121 0 : break;
1122 : case PIXARLOGDATAFMT_8BIT:
1123 : case PIXARLOGDATAFMT_8BITABGR:
1124 0 : n = cc;
1125 0 : break;
1126 : default:
1127 0 : TIFFErrorExt(tif->tif_clientdata, module,
1128 : "%d bit input not supported in PixarLog",
1129 0 : td->td_bitspersample);
1130 0 : return 0;
1131 : }
1132 :
1133 0 : llen = sp->stride * td->td_imagewidth;
1134 :
1135 0 : for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) {
1136 0 : switch (sp->user_datafmt) {
1137 : case PIXARLOGDATAFMT_FLOAT:
1138 0 : horizontalDifferenceF((float *)bp, llen,
1139 0 : sp->stride, up, sp->FromLT2);
1140 0 : bp += llen * sizeof(float);
1141 0 : break;
1142 : case PIXARLOGDATAFMT_16BIT:
1143 0 : horizontalDifference16((uint16 *)bp, llen,
1144 0 : sp->stride, up, sp->From14);
1145 0 : bp += llen * sizeof(uint16);
1146 0 : break;
1147 : case PIXARLOGDATAFMT_8BIT:
1148 0 : horizontalDifference8((unsigned char *)bp, llen,
1149 0 : sp->stride, up, sp->From8);
1150 0 : bp += llen * sizeof(unsigned char);
1151 0 : break;
1152 : default:
1153 0 : TIFFErrorExt(tif->tif_clientdata, module,
1154 : "%d bit input not supported in PixarLog",
1155 0 : td->td_bitspersample);
1156 0 : return 0;
1157 : }
1158 : }
1159 :
1160 0 : sp->stream.next_in = (unsigned char *) sp->tbuf;
1161 : assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised,
1162 : we need to simplify this code to reflect a ZLib that is likely updated
1163 : to deal with 8byte memory sizes, though this code will respond
1164 : apropriately even before we simplify it */
1165 0 : sp->stream.avail_in = (uInt) (n * sizeof(uint16));
1166 0 : if ((sp->stream.avail_in / sizeof(uint16)) != (uInt) n)
1167 : {
1168 0 : TIFFErrorExt(tif->tif_clientdata, module,
1169 : "ZLib cannot deal with buffers this size");
1170 0 : return (0);
1171 : }
1172 :
1173 : do {
1174 0 : if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) {
1175 0 : TIFFErrorExt(tif->tif_clientdata, module, "Encoder error: %s",
1176 : sp->stream.msg);
1177 0 : return (0);
1178 : }
1179 0 : if (sp->stream.avail_out == 0) {
1180 0 : tif->tif_rawcc = tif->tif_rawdatasize;
1181 0 : TIFFFlushData1(tif);
1182 0 : sp->stream.next_out = tif->tif_rawdata;
1183 0 : sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */
1184 : }
1185 0 : } while (sp->stream.avail_in > 0);
1186 0 : return (1);
1187 : }
1188 :
1189 : /*
1190 : * Finish off an encoded strip by flushing the last
1191 : * string and tacking on an End Of Information code.
1192 : */
1193 :
1194 : static int
1195 0 : PixarLogPostEncode(TIFF* tif)
1196 : {
1197 : static const char module[] = "PixarLogPostEncode";
1198 0 : PixarLogState *sp = EncoderState(tif);
1199 : int state;
1200 :
1201 0 : sp->stream.avail_in = 0;
1202 :
1203 : do {
1204 0 : state = deflate(&sp->stream, Z_FINISH);
1205 0 : switch (state) {
1206 : case Z_STREAM_END:
1207 : case Z_OK:
1208 0 : if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize) {
1209 0 : tif->tif_rawcc =
1210 0 : tif->tif_rawdatasize - sp->stream.avail_out;
1211 0 : TIFFFlushData1(tif);
1212 0 : sp->stream.next_out = tif->tif_rawdata;
1213 0 : sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */
1214 : }
1215 : break;
1216 : default:
1217 0 : TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
1218 : sp->stream.msg);
1219 0 : return (0);
1220 : }
1221 0 : } while (state != Z_STREAM_END);
1222 0 : return (1);
1223 : }
1224 :
1225 : static void
1226 0 : PixarLogClose(TIFF* tif)
1227 : {
1228 0 : TIFFDirectory *td = &tif->tif_dir;
1229 :
1230 : /* In a really sneaky (and really incorrect, and untruthfull, and
1231 : * troublesome, and error-prone) maneuver that completely goes against
1232 : * the spirit of TIFF, and breaks TIFF, on close, we covertly
1233 : * modify both bitspersample and sampleformat in the directory to
1234 : * indicate 8-bit linear. This way, the decode "just works" even for
1235 : * readers that don't know about PixarLog, or how to set
1236 : * the PIXARLOGDATFMT pseudo-tag.
1237 : */
1238 0 : td->td_bitspersample = 8;
1239 0 : td->td_sampleformat = SAMPLEFORMAT_UINT;
1240 0 : }
1241 :
1242 : static void
1243 0 : PixarLogCleanup(TIFF* tif)
1244 : {
1245 0 : PixarLogState* sp = (PixarLogState*) tif->tif_data;
1246 :
1247 0 : assert(sp != 0);
1248 :
1249 0 : (void)TIFFPredictorCleanup(tif);
1250 :
1251 0 : tif->tif_tagmethods.vgetfield = sp->vgetparent;
1252 0 : tif->tif_tagmethods.vsetfield = sp->vsetparent;
1253 :
1254 0 : if (sp->FromLT2) _TIFFfree(sp->FromLT2);
1255 0 : if (sp->From14) _TIFFfree(sp->From14);
1256 0 : if (sp->From8) _TIFFfree(sp->From8);
1257 0 : if (sp->ToLinearF) _TIFFfree(sp->ToLinearF);
1258 0 : if (sp->ToLinear16) _TIFFfree(sp->ToLinear16);
1259 0 : if (sp->ToLinear8) _TIFFfree(sp->ToLinear8);
1260 0 : if (sp->state&PLSTATE_INIT) {
1261 0 : if (tif->tif_mode == O_RDONLY)
1262 0 : inflateEnd(&sp->stream);
1263 : else
1264 0 : deflateEnd(&sp->stream);
1265 : }
1266 0 : if (sp->tbuf)
1267 0 : _TIFFfree(sp->tbuf);
1268 0 : _TIFFfree(sp);
1269 0 : tif->tif_data = NULL;
1270 :
1271 0 : _TIFFSetDefaultCompressionState(tif);
1272 0 : }
1273 :
1274 : static int
1275 0 : PixarLogVSetField(TIFF* tif, uint32 tag, va_list ap)
1276 : {
1277 : static const char module[] = "PixarLogVSetField";
1278 0 : PixarLogState *sp = (PixarLogState *)tif->tif_data;
1279 : int result;
1280 :
1281 0 : switch (tag) {
1282 : case TIFFTAG_PIXARLOGQUALITY:
1283 0 : sp->quality = (int) va_arg(ap, int);
1284 0 : if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) {
1285 0 : if (deflateParams(&sp->stream,
1286 : sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) {
1287 0 : TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s",
1288 : sp->stream.msg);
1289 0 : return (0);
1290 : }
1291 : }
1292 0 : return (1);
1293 : case TIFFTAG_PIXARLOGDATAFMT:
1294 0 : sp->user_datafmt = (int) va_arg(ap, int);
1295 : /* Tweak the TIFF header so that the rest of libtiff knows what
1296 : * size of data will be passed between app and library, and
1297 : * assume that the app knows what it is doing and is not
1298 : * confused by these header manipulations...
1299 : */
1300 0 : switch (sp->user_datafmt) {
1301 : case PIXARLOGDATAFMT_8BIT:
1302 : case PIXARLOGDATAFMT_8BITABGR:
1303 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1304 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1305 0 : break;
1306 : case PIXARLOGDATAFMT_11BITLOG:
1307 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1308 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1309 0 : break;
1310 : case PIXARLOGDATAFMT_12BITPICIO:
1311 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1312 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1313 0 : break;
1314 : case PIXARLOGDATAFMT_16BIT:
1315 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1316 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1317 0 : break;
1318 : case PIXARLOGDATAFMT_FLOAT:
1319 0 : TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1320 0 : TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
1321 : break;
1322 : }
1323 : /*
1324 : * Must recalculate sizes should bits/sample change.
1325 : */
1326 0 : tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t)(-1);
1327 0 : tif->tif_scanlinesize = TIFFScanlineSize(tif);
1328 0 : result = 1; /* NB: pseudo tag */
1329 0 : break;
1330 : default:
1331 0 : result = (*sp->vsetparent)(tif, tag, ap);
1332 : }
1333 0 : return (result);
1334 : }
1335 :
1336 : static int
1337 0 : PixarLogVGetField(TIFF* tif, uint32 tag, va_list ap)
1338 : {
1339 0 : PixarLogState *sp = (PixarLogState *)tif->tif_data;
1340 :
1341 0 : switch (tag) {
1342 : case TIFFTAG_PIXARLOGQUALITY:
1343 0 : *va_arg(ap, int*) = sp->quality;
1344 0 : break;
1345 : case TIFFTAG_PIXARLOGDATAFMT:
1346 0 : *va_arg(ap, int*) = sp->user_datafmt;
1347 0 : break;
1348 : default:
1349 0 : return (*sp->vgetparent)(tif, tag, ap);
1350 : }
1351 0 : return (1);
1352 : }
1353 :
1354 : static const TIFFField pixarlogFields[] = {
1355 : {TIFFTAG_PIXARLOGDATAFMT, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL},
1356 : {TIFFTAG_PIXARLOGQUALITY, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL}
1357 : };
1358 :
1359 : int
1360 0 : TIFFInitPixarLog(TIFF* tif, int scheme)
1361 : {
1362 : static const char module[] = "TIFFInitPixarLog";
1363 :
1364 : PixarLogState* sp;
1365 :
1366 0 : assert(scheme == COMPRESSION_PIXARLOG);
1367 :
1368 : /*
1369 : * Merge codec-specific tag information.
1370 : */
1371 0 : if (!_TIFFMergeFields(tif, pixarlogFields,
1372 : TIFFArrayCount(pixarlogFields))) {
1373 0 : TIFFErrorExt(tif->tif_clientdata, module,
1374 : "Merging PixarLog codec-specific tags failed");
1375 0 : return 0;
1376 : }
1377 :
1378 : /*
1379 : * Allocate state block so tag methods have storage to record values.
1380 : */
1381 0 : tif->tif_data = (uint8*) _TIFFmalloc(sizeof (PixarLogState));
1382 0 : if (tif->tif_data == NULL)
1383 0 : goto bad;
1384 0 : sp = (PixarLogState*) tif->tif_data;
1385 0 : _TIFFmemset(sp, 0, sizeof (*sp));
1386 0 : sp->stream.data_type = Z_BINARY;
1387 0 : sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1388 :
1389 : /*
1390 : * Install codec methods.
1391 : */
1392 0 : tif->tif_fixuptags = PixarLogFixupTags;
1393 0 : tif->tif_setupdecode = PixarLogSetupDecode;
1394 0 : tif->tif_predecode = PixarLogPreDecode;
1395 0 : tif->tif_decoderow = PixarLogDecode;
1396 0 : tif->tif_decodestrip = PixarLogDecode;
1397 0 : tif->tif_decodetile = PixarLogDecode;
1398 0 : tif->tif_setupencode = PixarLogSetupEncode;
1399 0 : tif->tif_preencode = PixarLogPreEncode;
1400 0 : tif->tif_postencode = PixarLogPostEncode;
1401 0 : tif->tif_encoderow = PixarLogEncode;
1402 0 : tif->tif_encodestrip = PixarLogEncode;
1403 0 : tif->tif_encodetile = PixarLogEncode;
1404 0 : tif->tif_close = PixarLogClose;
1405 0 : tif->tif_cleanup = PixarLogCleanup;
1406 :
1407 : /* Override SetField so we can handle our private pseudo-tag */
1408 0 : sp->vgetparent = tif->tif_tagmethods.vgetfield;
1409 0 : tif->tif_tagmethods.vgetfield = PixarLogVGetField; /* hook for codec tags */
1410 0 : sp->vsetparent = tif->tif_tagmethods.vsetfield;
1411 0 : tif->tif_tagmethods.vsetfield = PixarLogVSetField; /* hook for codec tags */
1412 :
1413 : /* Default values for codec-specific fields */
1414 0 : sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1415 0 : sp->state = 0;
1416 :
1417 : /* we don't wish to use the predictor,
1418 : * the default is none, which predictor value 1
1419 : */
1420 0 : (void) TIFFPredictorInit(tif);
1421 :
1422 : /*
1423 : * build the companding tables
1424 : */
1425 0 : PixarLogMakeTables(sp);
1426 :
1427 0 : return (1);
1428 : bad:
1429 0 : TIFFErrorExt(tif->tif_clientdata, module,
1430 : "No space for PixarLog state block");
1431 0 : return (0);
1432 : }
1433 : #endif /* PIXARLOG_SUPPORT */
1434 :
1435 : /* vim: set ts=8 sts=8 sw=8 noet: */
1436 : /*
1437 : * Local Variables:
1438 : * mode: c
1439 : * c-basic-offset: 8
1440 : * fill-column: 78
1441 : * End:
1442 : */
|